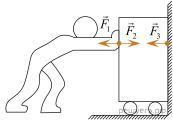

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1,4 ± 0,2) Н записывайте следующим образом: 1,40,2.

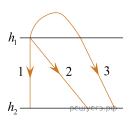
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. На рисунке представлен график зависимости координаты материальной точки от времени её движения. Начальная координата x_0 точки равна:

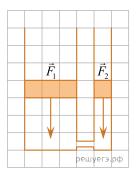
- 1) 12 m 2) 10 m
- 3) 8,0 м
- 4) 6,0 m
- 5) 5,0 м


2. Во время испытания автомобиля водитель держал постоянную скорость, модуль которой указывает стрелка спидометра, изображённого на рисунке. За промежуток времени $\Delta t = 24,0$ мин автомобиль проехал путь s, равный:

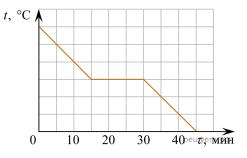
3. По параллельным участкам соседних железнодорожных путей в одном направлении равномерно двигались два поезда: пассажирский и товарный. Модуль скорости пассажирского поезда $v_1=72~\frac{{}^{\rm KM}}{{}^{\rm q}}$. Длина товарного поезда $l=0,40~{}_{\rm KM}$. Если пассажир, сидящий у окна в вагоне пассажирского поезда, заметил, что товарный поезд проехал мимо него за промежуток времени $\Delta t = 40 \, \, \mathrm{c}$, то модуль скорости v_2 товарного поезда равен:


1) 20
$$\frac{M}{C}$$
 2) 22 $\frac{M}{C}$ 3) 24 $\frac{M}{C}$ 4) 30 $\frac{M}{C}$ 5) 35 $\frac{M}{C}$

4. Человек толкает контейнер, который упирается в вертикальную стену (см.рис.). На рисунке показаны F_1 —сила, с которой контейнер действует на человека; F_2 — сила, с которой человек действует на контейнер; F_3 — сила, с которой стена действует на контейнер. Какое из предложенных выражений в данном случае является математической записью третьего закона Ньютона?

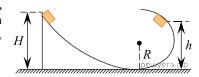


- 1) $\vec{F}_1 = -\vec{F}_2$ 2) $\vec{F}_1 = \vec{F}_3$ 3) $\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = 0$ 4) $\vec{F}_2 = -\vec{F}_3$ 5) $\vec{F}_1 \vec{F}_2 + \vec{F}_3 = 0$

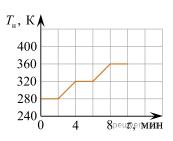

5. Тело перемещали с высоты h_1 на высоту h_2 по трём разным траекториям: 1, 2 и 3 (см. рис.). Если при этом сила тяжести совершила работу A_1 , A_2 и $\overline{A_3}$ соответственно, то для этих работ справедливо соотношение:

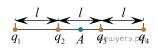
- 1) $A_1 > A_2 = A_3$ 2) $A_1 > A_2 > A_3$ 3) $A_1 = A_2 = A_3$ 4) $A_1 = A_2 < A_3$ 5) $A_1 < A_2 < A_3$
- 6. Два соединенных между собой вертикальных цилиндра заполнены несжимаемой жидкостью и закрыты невесомыми поршнями, которые могут перемещаться без трения. К поршням приложены силы \vec{F}_1 и \vec{F}_2 , направления которых указаны на рисунке. Если модуль силы F_1 = 36 H, то для удержания системы в равновесии модуль силы F_2 должен быть равен:

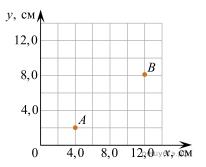
- 1) 4 H
- 2) 12 H
- 3) 36 H
- 4) 53 H
- 5) 78 H
- 7. В момент времени $\tau_0 = 0$ мин жидкое вещество начали охлаждать при постоянном давлении, ежесекундно отнимая у вещества одно и то же количество теплоты. На рисунке приведён график зависимости температуры t вещества от времени т. Одна треть массы вещества закристаллизовалась к моменту времени τ_1 , равному:

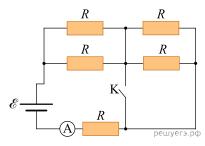

- 1) 5 мин
- 2) 20 мин
- 3) 25 мин
- 4) 30 мин
- 5) 35 мин
- **8.** Если концентрация молекул идеального газа $n = 2.0 \cdot 10^{25} \,\mathrm{m}^{-3}$, а средняя кинетическая энергия поступательного движения молекул газа $<\!E_{\kappa}\!> = 3.0\cdot 10^{-21}$ Дж, то давление p газа равно:

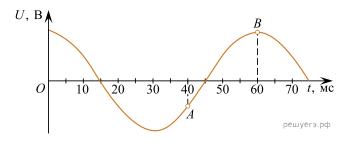
 - 1) 45 кПа 2) 40 кПа
- 3) 20 кПа
- 4) 15 κΠa
- 5) 10 κΠa
- 9. В некотором процессе над термодинамической системой внешние силы совершили работу $A = 25 \, \text{Дж}$, при этом внутренняя энергия системы увеличилась на ΔU = 55 Дж. Количество теплоты Q, полученное системой, равно:
 - 1)0
- 2) 25 Дж
- 3) 30 Дж
- 4) 55 Дж
- 5) 80 Дж
- 10. Если в результате трения о шерсть янтарная палочка приобрела отрицательный заряд q = -16 нКл, то общая масса m электронов, перешедших на янтарную палочку, равна:
 - 1) 9,1 · 10⁻¹⁷ Γ 2) 8,8 · 10⁻¹⁷ Γ 3) 7,6 · 10⁻¹⁷ Γ 4) 6,4 · 10⁻¹⁷ Γ 5) 5,8 · 10⁻¹⁷ Γ


- 11. Легковой автомобиль движется по шоссе со скоростью, модуль которой $v=18~\frac{\mathrm{M}}{c}$. Внезапно на дорогу выскочил лось. Если время реакции водителя t = 1,0 с, а модуль ускорения автомобиля при торможении a = 3,6 $\frac{M}{C^2}$, то остановочный путь s (с момента возникновения препятствия до полной остановки) равен ... м.
- 12. Игрок в кёрлинг сообщил плоскому камню начальную скорость \vec{v}_0 , после чего камень скользил по горизонтальной поверхности льда без вращения, пока не остановился. Коэффициент трения между камнем и льдом $\mu = 0.0098$. Если путь, пройденный камнем, s=32 м, то модуль начальной скорости υ_0 камня равен ... $\frac{\mathcal{A}^{\mathrm{M}}}{c}$.


- 13. Тело массой m = 0,25 кг свободно падает без начальной скорости с высоты H. Если на высоте h = 20 м кинетическая энергия тела $E_{\rm K}$ = 30 Дж, то первоначальная высота H равна ... м.
- **14.** С высоты H = 80 см из состояния покоя маленький брусок начинает соскальзывать по гладкой поверхности, плавно переходящей в полуцилиндр радиусом R=50 см (см. рис.). Если траектория движения бруска лежит в вертикальной плоскости, то высота h, на которой брусок оторвётся от внутренней поверхности полуцилиндра, равна ... см.


- **15.** При нагревании одноатомного идеального газа средняя квадратичная скорость теплового движения его молекул увеличилась в n = 1,20 раза. Если начальная температура газа была $t_1 = -14$ °C, то конечная температура t_2 газа равна ... °C. Ответ округлите до целого числа.
- **16.** Воздух (c=1 кДж/(кг · °C)) при прохождении через электрический фен нагревается от температуры $t_1=20$ °C до $t_2=60$ °C. Если мощность, потребляемая феном, P=1,0 кВт, то масса m воздуха, проходящего через фен за промежуток времени $\tau=10$ мин, равна ... кг.
- **17.** На рисунке изображен график зависимости температуры $T_{\rm H}$ нагревателя тепловой машины, работающей по циклу Карно, от времени τ . Если температура холодильника тепловой машины $T_{\rm X}=-3$ °C, то максимальный коэффициент полезного действия $\eta_{\rm max}$ машины был равен ... %.

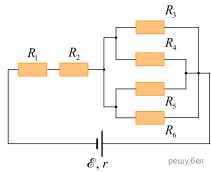

18. Четыре точечных заряда $q_1=0,45$ нКл, $q_2=-0,5$ нКл, $q_3=0,5$ нКл, $q_4=-0,9$ нКл расположены в вакууме на одной прямой (см. рис.). Если расстояние между соседними зарядами l=30 мм, то в точке A, находящейся посередине между зарядами q_2 и q_3 , модуль напряженности E электростатического поля системы зарядов равен ... $\kappa \mathbf{B}/\mathbf{m}$.


19. Если точечный заряд $q=2,50~{
m nK}$ л, находящийся в вакууме, помещен в точку A (см.рис.), то потенциал электростатического поля, созданного этим зарядом, в точке B равен ... B.

20. В электрической цепи, схема которой приведена на рисунке, сопротивления всех резисторов одинаковы и равны R, а внутреннее сопротивление источника тока пренебрежимо мало. Если до замыкания ключа K идеальный амперметр показывает силу тока $I_1=18$ мA, то после замыкания ключа K амперметр показывал силу тока I_2 равную ... мA.

21. Напряжение на участке цепи изменяется по гармоническому закону (см. рис.). В момент времени $t_{\rm A}$ = 40 мс напряжение на участке цепи равно $U_{\rm A}$, а в момент времени $t_{\rm B}$ = 60 мс равно $U_{\rm B}$. Если разность напряжений $U_{\rm B}-U_{\rm A}$ = 70 B, то действующее значение напряжения $U_{\rm A}$ равно ... **B**.

- **22.** Маленькая заряжённая (q=1,2) мкКл) бусинка массой m=1,5 г может свободно скользить по оси, проходящей через центр тонкого незакреплённого кольца перпендикулярно его плоскости. По кольцу, масса которого M=4,5 г и радиус R=10 см, равномерно распределён заряд Q=3,0 мкКл. В начальный момент времени кольцо покоилось, а бусинке, находящейся на большом расстоянии от кольца. Чтобы бусинка смогла пролететь сквозь кольцо, ей надо сообщить минимальную начальную скорость υ_{0min} равную
- $\dots \frac{M}{c}$.

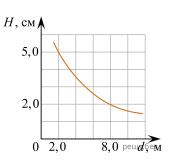

- 23. Маленький заряженный шарик массой m=4,0 мг подвешен в воздухе на тонкой непроводящей нити. Под этим шариком на вертикали, проходящей через его центр, поместили второй маленький шарик, имеющий такой же заряд $(q_1=q_2)$, после чего положение первого шарика не изменилось, а сила натяжения нити стала равной нулю. Если расстояние между шариками r=30 см, то модуль заряда каждого шарика равен ... нКл.
- **24.** Для исследования лимфотока пациенту ввели препарат, содержащий $N_0=120~000$ ядер радиоактивного изотопа золота $^{133}_{54}$ Xe. Если период полураспада этого изотопа $T_{\frac{1}{2}}=5,5~{\rm cyr.}$, то $\Delta N=90000$ ядер $^{133}_{54}$ Xe распадётся за промежуток времени Δt , равный ... сут.
- **25.** Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31,7$ кВт · ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.
- **26.** Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r=0,50 Ом, и резистора сопротивлением R=10 Ом. Если сила тока в цепи I=2,0 А, то ЭДС $\mathcal E$ источника тока равна ... В.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10.0 \,\text{Om}.$$

В резисторе R_6 выделяется тепловая мощность $P_6 = 90,0$ Вт. Если внутреннее сопротивление источника тока r = 4,00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.



- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm Л}=6,4\cdot 10^{-15}~{\rm H}$, то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0.20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1.0\cdot 10^4\ \frac{\mathrm{pag}}{\mathrm{c}},\$ то ёмкость C конденсатора равна ... мк Φ .

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

